The Max-Distance Network Creation Game on General Host Graphs

D. Bilò, L. Gualà, S. Leucci, G. Proietti

13 Luglio 2012

The Max-Distance Network Creation Game on General Host Graphs

D. Bilò, L. Gualà, S. Leucci, G. Proietti

∃ ▶

Introduction

Network Creation Games are games that model the formation of large-scale networks governed by autonomous agents. E.g.:

- Social networks (friendship networks, collaboration networks, scientific citations, ...)
- · Communication networks, e.g. the Internet

Hosts are rational and egoistic agents who want to buy links in order to construct a good-quality network while spending the least possible.

Not all links can be bought. An host can only buy a link (towards another host) if the link belongs to a given existing network infrastucture.

伺 と く ヨ と く ヨ と

Given an undirected and connected *host graph* H, and a parameter $\alpha \geq 0$, we define MAXGAME+HG to be a strategic game $\langle V(H), \Sigma, C \rangle$.

The set of strategies of a player $u \in V(H)$ is the power set of all the edges that are incident to u in H

$$\Sigma_u = \mathcal{P}(\{(u,v) \in E : v \in V\})$$

Given a strategy profile $\sigma = \langle \sigma_u \rangle_{u \in V}$ we define the graph G_{σ} as:

$$V(G_{\sigma}) = V$$
 ed $E(G_{\sigma}) = \bigcup_{u \in V} \sigma_u$

Intuitively, G_{σ} contains all the edges bought by the players.

The payoff of a player u w.r.t. σ is a cost composed by the sum of two quantities:

- The *building cost*: α times the number of edges bought by *u*.
- The usage cost: the eccentricity of the vertex u in G_{σ} .

Each player wants to minimize his cost, so he would like to pursue two conflicting objectives:

- Connect to few other hosts.
- Keep his eccentricy low.

To summarize, the *cost of the player u* is:

$$C_u(\sigma) = \alpha \cdot |\sigma_u| + \varepsilon_\sigma(u)$$

A strategy profile σ is a *Nash Equilibrium* iff. every player cannot decrease his cost by changing his strategy (provided that the strategies of all the other players do not change). More precisely:

Definition (Nash Equilibrium)

A strategy profile σ is a Nash Equilibrium for MAXGAME+HG if $\forall u \in V$:

$$C_u(\sigma) \leq C_u(\langle \overline{\sigma}_u, \sigma_{-u} \rangle) \quad \forall \overline{\sigma}_u \in \Sigma_u$$

The Max-Distance Network Creation Game on General Host Graphs

Quite naturally, we can define a *social cost function* as the sum of the player's payoffs:

$$SC(\sigma) = \sum_{u \in V} C_u(\sigma)$$

•

Let *OPT* be a strategy profile minimizing $SC(\sigma)$. *OPT* is said to be a *social optimum*:

$$OPT \in rg\min_{\sigma} SC(\sigma)$$

The Max-Distance Network Creation Game on General Host Graphs

Let σ ne a N.E., the quantity $Q(\sigma) = \frac{SC(\sigma)}{SC(OPT)}$ is a measure of its quality.

- If $Q(\sigma)$ is 1 then σ is a social optimum.
- If Q(σ) is large, then σ has a cost much bigger than a social optimum.

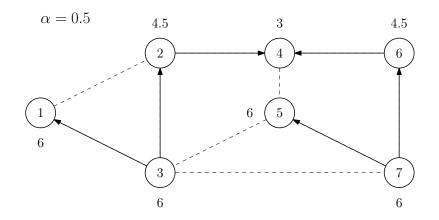
The *Price of Anarchy* (PoA) [?] is the maximum of $Q(\sigma)$ w.r.t. all the NEs:

$$PoA = \max_{\sigma:\sigma \text{ is a } N.E.} \frac{SC(\sigma)}{SC(OPT)}$$

Intiutively, the PoA is an upper bound to the quality loss of an equilibrium caused by the egoistic behaviour of the players.

伺 ト イ ヨ ト イ ヨ ト

Example: Strategy profile



The Max-Distance Network Creation Game on General Host Graphs

D. Bilò, L. Gualà, S. Leucci, G. Proietti

э

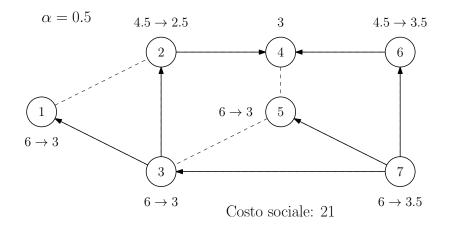
→ 3 → < 3</p>

A ►

MAXGAME+HG is not a potential game 0000

Lower bound al Prezzo dell'Anarchia

Example: Equilibrium



The Max-Distance Network Creation Game on General Host Graphs

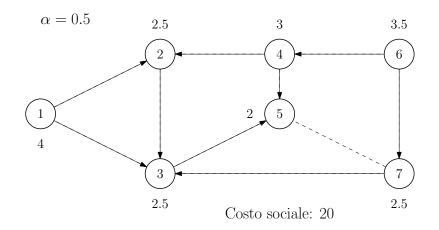
D. Bilò, L. Gualà, S. Leucci, G. Proietti

э

* 3 * * 3

P

Example: Social optimum



The Max-Distance Network Creation Game on General Host Graphs

D. Bilò, L. Gualà, <u>S. Leucci</u>, G. Proietti

э

Image: A = 1

17 ▶

Problems of interest for non-cooperative games

- Bound the quality loss of an equilibrium:
 - Price of Anarchy.
- Computational issues.
 - Finding equilibria.
 - Computing the best response of a player w.r.t. the other strategies.
- Dynamics:
 - Analisys of the best and better response dynamics.
 - If the players play in turns, do they end up in a N.E.?
 - Bounding the time needed for convergence.

Related works:

Problems related to ${\rm MAXGAME}{\rm +HG}$ can be found in:

- [?] On a network creation game:
 - First model for communication networks.
 - Complete host graph.
 - The usage cost is the routing cost (sum of the distances).
- [?] The price of anarchy in network creation games:
 - Complete host graph.
 - The usage cost is the eccenticity.
- [?] The price of anarchy in cooperative network creation games:
 - Arbitrary host graph.
 - The usage cost is the routing cost (sum of the distances).

MAXGAME+HG was not studied (at the time).

Why MAXGAME+HG?

Studying MAXGAME+HG is interesting:

- It is a generalization of a prominent problem in the literature.
- Assuming the existence of a complete host graph is unrealistic.
- Insights on how the topology of the host graph affects the quality of the resulting networks.

Results (1/2)

Results and bounds to the Price of Anarchy:

- Computing the best response of a player is *NP Hard* (reduction from Set-Cover)
- MAXGAME+HG is not a potential game. Moreover the best response dynamics does not converge to an equilibrium if $\alpha > 0$.

Results (2/2)

Results and bounds to the Price of 'Anarchy:

Notes	Lower Bound	Upper Bound
_	$\max\{\Omega\left(\sqrt{\frac{n}{1+\alpha}}\right),\\\Omega(1+\min\{\alpha,\frac{n}{\alpha}\})\}$	$O(\frac{n}{\alpha+r_H})$
$\alpha \ge n$	$\Omega(1)$	<i>O</i> (1)
L'equilibrio è un albero	_	$\min\{O(\alpha+1),O(r_H)\}$
E(H) = $n - 1 + k \operatorname{con}$ k = O(n)	_	O(k+1)
<i>H</i> è una griglia	$\Omega(1 + \min\{\alpha, \frac{n}{\alpha}\})$	$O(\frac{n}{\alpha+r_H})$
$\begin{array}{c} H \neq k \text{-regolare} \\ \text{con } k \geq 3 \end{array}$	$\Omega(1+\min\{\alpha,\frac{n}{\alpha}\})$	$O(\frac{n}{\alpha+r_H})$

n = |V(H)|, r_H is the raius of H.

э

(日) (同) (三) (三)

Potential game: definition

A game is an *(exact) potential game* if it admits an *(exact) potential* function Φ on $\overline{\Sigma} = \prod_{u \in V} \Sigma_u$ such that, when a player changes his strategy, the change is his payoff is equal to the change of the potential function.

Definition ((Exact) Potential function)

 $\Phi: \overline{\Sigma} \to \mathbb{R}$ is an (exact) potential function if $\forall \sigma \in \overline{\Sigma}$, $\forall u \in V$, $\forall \overline{\sigma}_u \in \Sigma_u$ we have:

$$C_u(\langle \overline{\sigma}_u, \sigma_{-u} \rangle) - C_u(\sigma) = \Phi(\langle \overline{\sigma}_u, \sigma_{-u} \rangle) - \Phi(\sigma)$$

The Max-Distance Network Creation Game on General Host Graphs

▶ ◀ 🗇 ▶ ◀ ☱ ▶ ◀ ☱ ▶ ☱ → 곗 ↔ D. Bilò, L. Gualà, <u>S. Leucci</u>, G. Proietti

Potential game: properties

- A potential game has at least a N.E.
- The potential function Φ has a global minimum (it is defined on a finite domain).
- Every better response dynamics eventually converges to a N.E. (the value of Φ is monotonically decreasing).

Theorem

For every constant α MAXGAME+HG is not a potential game. Moreover, if $\alpha > 0$, the better response dynamics does not converge to a N.E.

MAXGAME+HG is not a potential game

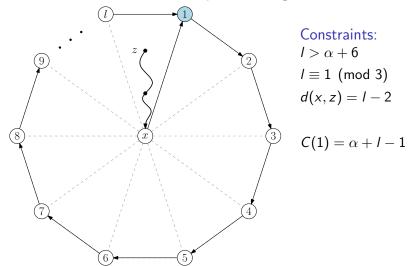
Dimostrazione

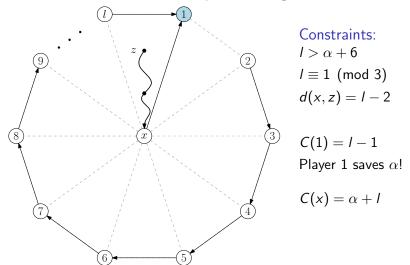
Suppose, by contraddiction, that Φ is a potential function for ${\rm MAXGAME}{+}{\rm HG}.$

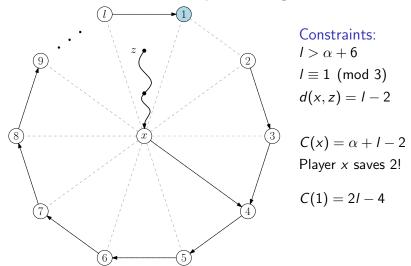
For every value of α we will show an host graph an a sequence of strategy changes that will allow to arbitrarily decrease the value of Φ .

The following *liveness* property will also hold:

There exists a constant k > 0 such that, starting from any turn t, every player plays at least once between the turns (t + 1) and (t + k).



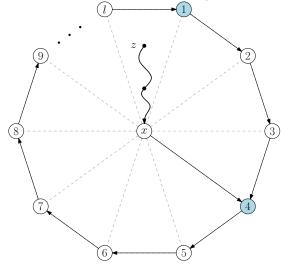




 ${\rm MaxGAME}{+}{\rm HG}$ is not a potential game ocoo

Lower bound al Prezzo dell'Anarchia

MAXGAME+HG is not a potential game

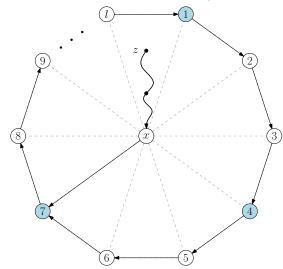


Constraints: $l > \alpha + 6$ $l \equiv 1 \pmod{3}$ d(x, z) = l - 2 $C(1) = \alpha + l + 2$ Player 1 saves

 $I-(\alpha+6)>0$

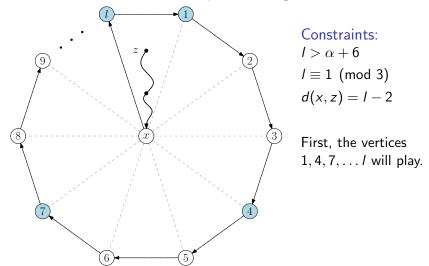
Player 4 is in the same situation of player 1 at the beginning of the game.

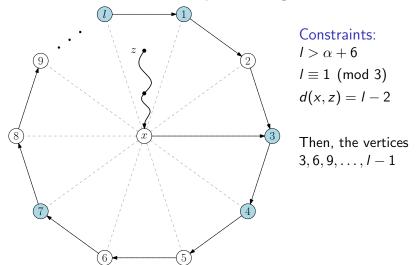
MAXGAME+HG is not a potential game

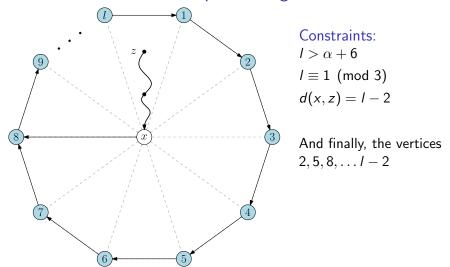


Constraints: $l > \alpha + 6$ $l \equiv 1 \pmod{3}$ d(x, z) = l - 2

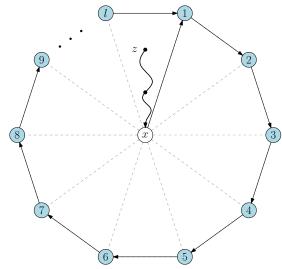
We can repeat the previous strategy changes. The potential function must decrease by 2 each time.







MAXGAME+HG is not a potential game



Constraints: $l > \alpha + 6$

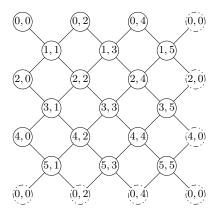
 $l \equiv 1 \pmod{3}$

$$d(x,z)=l-2$$

If we repeat the strategy changes one more time, we return to the starting configuration.

We have a *strategy cycle!*

Lower bounds to the PoA



Definition (Quasi-torus \overline{H})

- V(H) has 2k² intersection vertices, i.e. the pairs (i,j) s.t. 0 ≤ i,j < 2k and i + j is even.
- Each vertex $(i, j) \in V(H)$ has an edge towards $\{(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)\}$ modulo 2k.
- Each edge has weight
 ℓ = 2(1 + ⌈α⌉).

< ∃ >

Some properties

Let $X_{i,j}$ be the set of vertices that are either on the *i*-th row or on the *j*-th column. The following properties hold:

- i) \overline{H} is vertex-transitive.
- ii) The distance between (i, j) and (i', j') is:

 $\ell \cdot \max\left\{\min\left\{|i-i'|, 2k-|i-i'|\right\}, \min\left\{|j-j'|, 2k-|j-j'|\right\}\right\}$

- iii) The eccentricity of every vertex is ℓk .
- iv) $\forall 0 \leq i, j \leq 2k$, the distance between a vertex $v \in X_{i,j}$ and $\langle |i k|, |j k| \rangle$ is ℓk .
- v) If $(u, v) \in E(\overline{H})$ then the eccentricities of u and v in $\overline{H} \ell$ are at least $\ell(k + 1)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Building the equilibrium and the Host Graph

Let G be the unweigted graph obtained by replacing each edge (u, v) in \overline{H} by a path of length ℓ between u and v.

The graph *G* has $\ell - 1$ new vertices for each edge of *H*. The total number of vertices is therefore $n = 2k^2 + 4k^2(\ell - 1) = \Theta(k^2(1 + \alpha)) \text{ from which}$ $k = \Theta(\sqrt{\frac{n}{1+\alpha}}).$

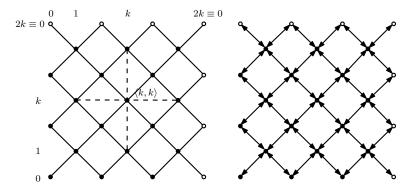
Let σ be a strategy profile such that $G_{\sigma} = G$ and intersection vertices haven't bought any edges.

Let A be a set containing one vertex per row and one vertex per column. Let H be the graph obtained by adding to G all the vertices in $X_{i,j} \forall \langle i,j \rangle \in A$.

 σ is an equilibrium for ${\rm MaxGAME}{+}{\rm HG}$ with host graph H.

・ロト ・同ト ・ヨト ・ヨト

Building the equilibrium and the Host Graph



-

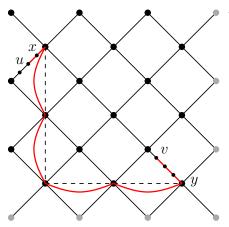
σ is a Nash Equilibrium

- Every intersection vertex $\langle i, j \rangle$ of G has eccentricity ℓk .
- By property (iv), (i, j) cannot improve its eccentricy using the edges towards X_{i,j}.
- The vertices $\langle i,j\rangle$ haven't bought edges, so they cannot remove of swap edges.
- The vertices on the paths have an eccentricy of at most lk + l/2 as the nearest intersection vertex is at most at a distance of l/2.
- The vertices on the paths can only remove a single edge. By property (v), doing so would increase their eccentricity by at least ℓ(k + 1) − ℓk − ^ℓ/₂ > α.

 $\rm MAXGAME+HG$ is not a potential game 0000

Lower bound al Prezzo dell'Anarchia

Bounding the PoA

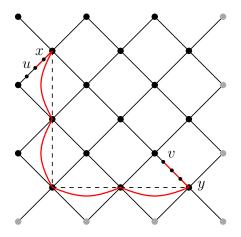


The radius of G is $\Omega(\ell k)$. The radius of H is $O(\ell)$. A path between two vertices u and v can be built as the union of:

- A subpath of length $O(\ell)$ between u and an intersection vertex x.
- A subpath of at most 4 edges in E(H) \ E(G) between x and an intersection vertex y "near" v.
- 3 A subpath of length $O(\ell)$ between y and v.

3

Bounding the PoA



$$PoA \ge \frac{SC(\sigma)}{SC(OPT)} \ge \frac{SC(G)}{SC(H)}$$
$$= \Omega\left(\frac{\alpha n + n\ell k}{n\ell}\right)$$
$$= \Omega\left(\frac{n\ell k}{n\ell}\right) = \Omega(k)$$
$$= \Omega\left(\sqrt{\frac{n}{1+\alpha}}\right)$$

< 17 ▶

The Max-Distance Network Creation Game on General Host Graphs

∃ → < ∃</p> D. Bilò, L. Gualà, S. Leucci, G. Proietti

э